

HOCHSCHULE ZITTAU/GÖRLITZ, FAKULTÄT MASCHINENWESEN, **FACHGEBIET TECHNISCHE THERMODYNAMIK** 



**TECHNISCHE UNIVERSITÄT DRESDEN,** FAKULTÄT MASCHINENWESEN, **PROFESSUR FÜR THERMISCHE ENERGIEMASCHINEN UND -ANLAGEN** 

**DEUTSCHES ZENTRUM FÜR LUFT-UND RAUMFAHRT**, **INSTITUT FÜR ANTRIEBSTECHNIK**, NUMERISCHE METHODEN

# Simulation instationärer Kraftwerksprozesse auf Grundlage der neuen IAPWS-Guideline zum Spline-Basierten Table Look-up Verfahren (SBTL)

Matthias Kunick, Hans-Joachim Kretzschmar, Francesca di Mare und Uwe Gampe



Farbige Konturen: Abweichungen der PR-ZGL von IAPWS-95 Graue Zahlen: Unsicherheiten der IAPWS-95 (Unsicherheiten der IAPWS-IF97 sind etwas höher)

| Rechenzeit:                                                                          |                 | IAPWS-IF97 Bereich      |                          |
|--------------------------------------------------------------------------------------|-----------------|-------------------------|--------------------------|
| Computing-Time Ratio (CTR):                                                          | Funktion        | 1 (Flüssigkeit)         | 2 (Dampf)                |
| Pochonzoit dor IADN/S IE07 ( 05)                                                     | р( <i>v</i> ,и) | 4.8 (88)                | 9.0 (114)                |
| $CTR = \frac{\text{Rechenzent der IAF WS-IF97 (-95)}}{\text{Dechenzeit der DD 7CL}}$ | T(v,u)          | 4.8 (91)                | 9.3 (115)                |
| Rechenzeit der PR-ZGL                                                                | T(p,h)          | 0.41 <sup>a)</sup> (23) | 0.60 <sup>a)</sup> (43)  |
| Phasen- und Bereichstests sind in diesen CTR-Werten nicht ent-                       | v(p,h)          | 0.48 <sup>a)</sup> (23) | 0.91 <sup>a)</sup> (43)  |
| halten, führen jedoch zu einer weiteren Erhöhung der Rechenzeiten!                   | a) IAPWS-IF     | -97 Rückwärtsgleichun   | g und ein Newton-Schritt |

#### Table Look-up Methoden (Interpolation aus tabellierten Werten):



Berechnung einer beliebigen Zustandsgröße  $z(x_1, x_2)$ :



- Diskrete Werte  $z_{ii}(x_{1,i}, x_{2,i})$  werden an den Stützstellen (*i*,*j*) aus der Zustandsgleichung berechnet und in einer Tabelle gespeichert.
  - Während der Berechnung wird die Zelle {*i*,*j*} im Stützstellenraster bestimmt und  $z(x_1, x_2)$  aus den tabellierten Werten interpoliert.

|   |                          |         | Max. Abweichung von IAPWS-IF97 |                                                       |                        |                                                       |
|---|--------------------------|---------|--------------------------------|-------------------------------------------------------|------------------------|-------------------------------------------------------|
|   | Funktion                 |         | Flüssigkeit                    |                                                       | Dampf                  |                                                       |
| ŗ |                          | ≤2.5MPa | $ \Delta p/p $                 | <0.12%                                                |                        | -0.001.0/                                             |
|   | $\rho(v,u)$              | >2.5MPa | $ \Delta p $                   | <0.6kPa                                               | $ \Delta \rho   \rho $ | < 0.001 %                                             |
|   | T(v,u)                   |         | \[]\]                          | <1mK                                                  | $ \Delta T $           | <1mK                                                  |
|   | S( <i>v</i> , <i>u</i> ) |         | $ \Delta s $                   | <10 <sup>-6</sup> kJ kg <sup>-1</sup> K <sup>-1</sup> | $ \Delta s $           | <10 <sup>-6</sup> kJ kg <sup>-1</sup> K <sup>-1</sup> |
|   | w(v,u)                   |         | $ \Delta w/w $                 | < 0.001 %                                             | $ \Delta w/w $         | < 0.001 %                                             |
|   | η(v,u)                   |         | $ \Delta \eta / \eta $         | <0.001%                                               | $ \Delta \eta / \eta $ | < 0.001%                                              |

|                                  | IAFWS-IF97 Bereich |         |             |  |
|----------------------------------|--------------------|---------|-------------|--|
| Funk                             | 1                  | 2       | 4           |  |
|                                  | (Flüss.)           | (Dampf) | (Nassdampf) |  |
| p(v,u)                           | 130                | 271     | 19.6        |  |
| <i>T</i> ( <i>v</i> , <i>u</i> ) | 161                | 250     | 20.6        |  |
| η(v,u)                           | 197                | 309     | -           |  |
| u(p,v)                           | 2.0                | 6.4     | 5.6         |  |
| v(u,s)                           | 43.5               | 66.4    | 16.2        |  |

## Anwendung des SBTL Verfahrens

Simulation kondensierenden Dampfes in einer Leitschaufelreihe mit der **CFD-Software TRACE** [3], entwickelt am DLR:





 $\dot{\mathbf{X}}_{1,i}$   $\mathbf{X}_{1,i+1}$   $\dot{\mathbf{X}}_{1}$ Genauigkeit und Rechenzeit sind von der Struktur des Stützstellenrasters und den <u>Eintritt:</u> •  $p_{t.Ein} = 41.7 \text{ kPa}$ <u>Austritt:</u> •  $p_{Aus} = 20.6 \text{ kPa}$ Annahmen: • Gleichgewichtskondensation (keine Unterkühlung) •  $T_{t.Ein} = 357.5 \text{ K} (\Delta T_s = +7.5 \text{ K})$ verwendeten Interpolationsalgorithmen abhängig. • homogene Zweiphasenströmung Schwächen häufig verwendeter Verfahren: **Ergebnisse**:  $\succ$  Die Ergebnisse von Prozesssimulationen mit dem SBTL Verfahren sind praktisch •Um das nichtlineare Verhalten der Stoffwertfunktion zu berücksichtigen, werden die identisch zur direkten Anwendung des IAPWS-IF97 Standards. Stützstellen meist lokal verdichtet, was zu aufwändigeren Algorithmen zur Zellsuche führt. •Oft werden die am häufigsten verwendeten Stoffwertfunktionen als inverse Funktionen > CFD-Simulationen unter Berücksichtigung des Realstoffverhaltens sind mit dem SBTL und nicht aus expliziten Vorwärtsfunktionen berechnet. Verfahren im Vergleich zur Anwendung des IAPWS-IF97 Standards 10-mal schneller. • Bilineare Interpolation liefert keine stetigen ersten Ableitungen. > Im Vergleich zur Anwendung des Ideal-Gas Modells steigen die Rechenzeiten lediglich • Bikubische Interpolationsansätze führen zu rechenzeitintensiven inversen Funktionen. auf das 1.4 fache. Zielstellungen des Projekts: Weitere Anwendungen (Auswahl): Entwicklung eines neuen Table Look-up Verfahrens, dass die genannten Schwächen RELAP-7 (Sicherheitsanalyse von Kernenergiesystemen, überwindet und zudem schnelle und genaue Stoffwertfunktionen mit stetigen ersten entwickelt am Idaho National Laboratory (INL)): Ableitungen, sowie <u>schnelle und numerisch konsistente inverse Funktionen</u> liefert.  $\rightarrow$  vereinfachte Zustandsgleichungen wurden durch schnelle und genaue SBTL Funktionen ersetzt; angewendet in einem neuen Modell für die Zweiphasenströmung Das Spline-Basierte Table Look-up Verfahren (SBTL) KRAWAL (Wärmeschaltbild-Berechnungsprogramm zur Kraftwerksauslegung, Beispiel: *p*(*v*,*u*) 1) Variablentransformationen (z.B.  $v \rightarrow \overline{v}$ ) um: entwickelt bei SIEMENS PG): • die Genauigkeit zu verbessern (Linearisierung) Stützstellenraster (*i*, *j*) Knotenraster  $\rightarrow$  Halbierung der Gesamtrechenzeiten in Bezug auf Berechnungen mit direkter • den Zustandsbereich umzuformen (Rechteck) Anwendung des IAPWS-IF97 Standards 2) Definition eines rechtwinkligen, stückweise äquidistanten Stützstellenrasters (schneller Algorithmus zur Zellsuche) Schlussfolgerungen und Ausblick 3) Definition der Zellen im Knotenraster Das neu entwickelte SBTL Verfahren [4,5,6]: 4) Berechnung aller Koeffizienten *a<sub>iikl</sub>* der biquadratischen `Zelle {*i*,*j*} • ermöglicht die Berücksichtigung des Realstoffverhaltens in CFD- und anderen rechnerisch Spline-Polynome (für stetige erste Ableitungen): aufwändigen Prozesssimulationen mit hoher Genauigkeit und geringen Rechenzeiten.  $\boldsymbol{p}_{\{i,j\}}(\overline{\boldsymbol{v}},\boldsymbol{u}) = \sum_{i=1}^{3} \sum_{j=1}^{3} \boldsymbol{a}_{ijkl} (\overline{\boldsymbol{v}} - \overline{\boldsymbol{v}}_{i})^{k-1} (\boldsymbol{u} - \boldsymbol{u}_{j})^{l-1}$  kann auf beliebige Stoffe angewendet werden (z.B. mit der Software FluidSplines). • wird bereits erfolgreich in der numerischen Prozesssimulation eingesetzt. Inverse Funktionen, z.B. *u*(*p*,*v*): • wird derzeit auf Gemische erweitert, z.B. für feuchte Luft und feuchte Verbrennungsgase. **Berechnung inverser Funktionen:** Ein Kondensationsmodell wird zur Berücksichtigung der Unterkühlung in TRACE integriert. SBTL Funktionen von (*v*,*u*): (*u*,s): (*p*,*v*):



STUDIEREN\_OHNE\_GRENZEN

## Literatur/Veröffentlichungen

- [1] IAPWS, Revised Release on the IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use (2014), verfügbar unter http://www.iapws.org.
- [2] IAPWS, Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (2007), verfügbar unter http://www.iapws.org.
- [3] Kunick, M., Kretzschmar, H.-J., di Mare, F., and Gampe, U., CFD Analysis of Steam Turbines with the IAPWS Standard on the Spline-Based Table Look-Up Method (SBTL) for the Fast Calculation of Real Fluid Properties, ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Vol. 8: Microturbines, Turbochargers and Small Turbomachines; Steam *Turbines*, ISBN: 978-0-7918-5679-6 (2015).
- [4] IAPWS, Guideline on the Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL), verfügbar unter http://www.iapws.org.
- [5] Kunick, M., Kretzschmar, H.-J., Gampe, U., di Mare, F., Hrubý, J., Duška, M., Vinš, V., Singh, A., Miyagawa, K., Weber, I., Pawellek, R., Novi, A., Blangetti, F., Friend, D.G., and Harvey, A.H., Fast Calculation of Steam and Water Properties with the Spline-Based Table Look-Up Method (SBTL), J. Eng. Gas Turbines & Power, in Vorbereitung.
- [6] Kunick, M., Fast Calculation of Thermophysical Properties in Extensive Process Simulations with the Spline-Based Table Look-Up Method (SBTL), VDI Fortschritt-Berichte, in Vorbereitung.

### www.thermodynamik-zittau.de